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Abstract
We investigate the influence of phonon mediated interactions on the non-unitary evolution of
geometrical phases in excitonic qubits formed in quantum dots entangled by pure Förster
coupling. We consider decoherence to occur via acoustic phonons interacting through the
deformation potential and piezoelectric coupling mechanisms. The influences of bath
temperature, external electric field, quantum dot size and interdot distance on the evolution of
geometrical phases are examined for the GaAs/AlGaAs material system. We extend the theory
to determine the effect of dynamic decoupling employing ultrafast π -pulses on the evolution of
geometrical phases in the presence of dephasing processes.

1. Introduction

Exciton-based interactions in quantum dots play a vital role in
the solid state implementation of quantum logic gates [1–4].
Excitons have an advantage over other forms of two-level
systems in that they couple well with photons and have
large dipole moments which allows easy manipulation of
qubits via optical pulses [5]. Recent advances in creating
and probing excitonic states [4, 6, 7] have provided rapid
progress in the field of solid state quantum computation.
The first observation of Rabi oscillations [8] in quantum dot
excitons has demonstrated the ease with excitonic qubits can be
manipulated as solid state logic gates. Despite these attractive
features, excitonic qubits are subjected to undesirable effects
of decoherence due to environmental factors such as lattice
vibrations. In this work, we examine the key obstacles to
the realization of geometric phase logic gates in exciton-based
systems.

Several strategies such as decoherence-free subspaces
[9, 10], optimal control techniques [11] and immunization
processes [12] have been proposed to counter the detrimental
effects of decoherence. One such proposal, geometric quantum
computation has gained increased status as a robust fault-
tolerant scheme [13–15] in recent years. The early works of
Berry [16] showed that besides the usual dynamical phase,
an additional phase known as the geometric phase is acquired
by quantum systems which undergo adiabatic evolution. This
geometric phase component relies solely on the Hilbert space
geometry of the path executed during cyclical evolution and

thus gives a measure of the curvature of the Hilbert space.
The geometrical phase is therefore manifestly gauge invariant
and generally considered to be robust against decoherence and
stochastic operation errors [17].

Since the initial discovery by Berry in the mid-
eighties [16], geometrical phases have been generalized to
include non-adiabatic, non-cyclic and non-unitary evolutions
of quantum systems [18–20]. Studies [21, 22] of the
geometrical phase in composite systems have shown their
critical dependence on the strength of coupling between the
two subsystems and lattice temperature. A wide range of
universal logic operations can be implemented by utilizing
the unique properties of geometric phases of qubit systems
manipulated via external controls [23]. Geometrical phase
gates as logic systems using superconducting electron boxes
in Josephson junction nanocircuits were studied in [14].
As pointed out by the authors of [14], advances in
fabrication techniques allow implementation of conditional
geometric phases in which the state of a neighbouring
qubit determines the geometric phase of a qubit. Such a
property is a key ingredient of quantum computing systems.
Recent experimental measurements of geometrical phases in
superconducting qubit systems [24] and Cooper pair pump [25]
highlights the possibility of using geometrical phases to
implement quantum logic processes in real physical systems.

Several works have investigated the effect of the external
environment on the geometrical phase of quantum systems.
The work by Whitney et al [26] showed that the geometrical
phase of a spin-1/2 qubit acquires a noise-induced contribution
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of geometrical origin as an external magnetic field precesses
around the axis of a cone. An intuitive approach [27] to
the effect of classical and quantum noise on the geometrical
phase revealed the association of a topological component
with quantum noise. Earlier works [28, 29] investigating
the influence of environmental influence on geometrical
phase gates have shown that environmental noise can impose
constraints on proper functioning of logic gates. However to
date, there is no conclusive evidence showing the superiority of
geometrical computational schemes over other quantum forms
of quantum logic in terms of their resilience to environmental
noise. In this work, we investigate the influence of phonon
mediated interactions on the non-unitary evolution of the
geometrical phase for the specific case of excitonic qubits in
Förster coupled quantum dots [30]. We provide quantitative
estimates of the deviation from the purely unitary evolution of
the geometrical phase due to lattice vibrations. We are unaware
of other detailed studies of the influence of phonon mediated
interaction on geometrical phases of this specific two-level
solid state system.

In the latter part of this work, we study the effect of
π -pulses in the presence of decoherence on the evolution of
geometrical phases of quantum systems. Viola et al [31] and
Ban [32] first proposed that application of several successive
ultrafast π -pulses effectively reduces pure dephasing of a
two-level system interacting with its surrounding reservoir.
The interaction between the qubit spin and boson reservoir
is generally assumed to be linear in the amplitude of the
boson field. This approach, also known as the dynamical
decoupling approach is based on the time reversal of the
decoherence process in a short-timescale (about 0.5 ps) which
is comparable to the reservoir correlation time. Interestingly,
Akira [33] had suggested two decades earlier that the
reversibility of decay in the phonon wavevector gives rise
to suppression in decoherence during π -pulsing. Efforts to
enhance this scheme has grown rapidly in recent years due
to the potential benefits in quantum information processing.
The decoherence of excitonic system in semiconductors is
generally investigated by the four-wave and six-wave mixing
techniques [34]. One of the first experimental works on π -
pulsing of excitons [35] has recently confirmed that ultra-
short π pulse sequences can control and decrease decoherence
effects. In our work, we specifically examine the effect of
dynamical decoupling [35, 36] on the evolution of geometrical
phases during the first cycle of π -pulsing. There has
been relatively little focus in the literature on the effect of
decoherence on geometrical phases during π -pulsing of two-
level quantum systems.

This paper is organized as follows. In section 2 we
discuss key concepts of excitonic qubits and interdot Förster
tunnelling in quantum dots. In section 3 we briefly examine
the phonon mediated processes that lead to pure dephasing
of excitonic qubits as well as spontaneous emission processes
that provide an alternative route to decoherence in quantum
dot systems. In section 4, we evaluate the geometrical phase
of the composite exciton system using a kinematic approach
and present numerical results for the case of the GaAs/AlGaAs
material system. In section 5, we study the effect of dynamic

decoupling on the evolution of the geometrical phase in the
presence of decoherence. We provide conclusions of our work
in section 6.

2. Excitonic qubits in quantum dots

We consider two excitons in their ground states in adjacent
coupled quantum dots located at Ra and Rb. We assume
the quantum dots to be shaped in the form of either cuboid
boxes or quasi-two-dimensional disks in which the vertical
confinement energies of charge carriers are larger than their
lateral confinement energies. For simplicity we ignore spin
effects as exchange interactions due to singlet excitons are
generally very small [37]. We label the localized excitonic
states as |Ra〉 and |Rb〉 and accordingly code the excitonic
qubits states using these relative positions via the basis set
{|L〉, |R〉}:

|L〉 = |Ra〉 ⊗ |0〉b

|R〉 = |0〉a ⊗ |Rb〉,
(1)

where the states |0〉a and |0〉b, which correspond to the absence
of excitons, denote the respective ground states of the quantum
dots at |Ra〉 and |Rb〉.

We simplify this approach by considering a two-level
system involving only the states |L〉 and |R〉, and work in
the limit of a pure Förster coupling. The direct Coulomb
interaction which causes the formation of the biexciton state
|Ra〉|Rb〉 is neglected, and we also exclude the possibility of
entangled states involving the vacuum state |0〉a|0〉b. These
assumptions will simplify subsequent mathematical analysis of
the geometrical phase in section 4. The two-level excitonic
qubit Hamiltonian takes the form

̂Hex−qb = −h̄

(

��

2
σz + F σx

)

, (2)

where the Pauli matrices are given by σx = |L〉〈R| + |R〉〈L|
and σz = |L〉〈L| − |R〉〈R|, and �� = �a − �b denotes the
difference in exciton creation energy between the quantum dot
at Ra and that at Rb. F denotes the interdot Förster interaction
amplitude responsible for the transfer of an exciton from
one quantum dot to the other without involving a tunnelling
process. The symmetric and antisymmetric eigenstates of this
interacting qubit system are given by |χs〉 = cos β

2 |L〉 +
sin β

2 |R〉 and |χas〉 = sin β

2 |L〉 − cos β

2 |R〉 with corresponding

energies Eas(s) = �0+�a−(��/2)±√

(��/2)2 + F2 where
�0 denotes the ground state energy of the system in which each
quantum dot is unoccupied by excitons. The energy difference
between the eigenstates is

√

��2 + (2F)2 and in the absence
of any decoherence, the excitonic qubit oscillates coherently
between the two dots with the Rabi frequency Eas − Es. The
polar angle β in the Bloch sphere representation of a qubit is
related to �� and F by tan β = 2F

��
.

An explicit expression for the interdot Förster amplitude F
is obtained by modelling the confining potentials of quantum
charge carriers using harmonic potentials [40]

F(W ) = 〈R| ̂HF |L〉
=

√

11

8

µ · µ

εW 3

(

2	e	h

	e
2 + 	2

h

)2 (

2	ze	zh

	ze
2 + 	zh

2

)

, (3)
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where the interdot distance W = |Ra − Rb|. The length
scales 	e and 	h are associated with the respective electron and
hole harmonic potentials in the lateral direction while those in
the vertical direction are defined by 	ze and 	zh for electrons
and holes, respectively. µ denotes the interband dipole
matrix element which can be obtained using experimental
measurements [38].

In the presence of an external electric field E , equation (3)
becomes modified as

F(W ) =
√

11

8

|µ|2
εW 3

(

2	e	h

	e
2 + 	2

h

)3

exp

(

− e2 E2(ce + ch)
2

2ce
2ch

2(	e
2 + 	2

h)

)

(4)
where we have assumed 	ze = 	e, 	zh = 	h. The parameters
ce and ch are determined by the confining potential energies
for electrons and holes, respectively [39]. In this work, we use
typical values of ce ∼ ch = 5×10−3 J m−2 to obtain numerical
results in section 4.

3. Exciton–phonon interaction in quantum dots

We consider a simplified spin–boson model in which the
Förster interaction is switched off after a certain time, which
we set at t = 0. We consider the exciton state at each
quantum dot to be coupled to a continuum of acoustic phonons
via both the deformation potential and piezoelectric coupling.
We assume that the interaction between the two-state excitonic
qubit and surrounding phonon environment is linear so that the
Hamiltonian of the system under study is given by

̂H env
qb = ̂Hex−qb + ̂H ph + ̂H DP

ex−qb (5)

where ̂Hex−qb is given by equation (2), and ̂H ph denotes the
Hamiltonian for the phonon bath

̂Hph =
∑

q

h̄ωq,λ
b†

λ(q) bλ(q), (6)

where b†
λ(q), and bλ(q), are the respective creation and

annihilation operators of a λ-mode phonon with wavevector
q. The λ-mode is denoted LA for longitudinal acoustic
phonons and TA for transverse acoustic phonons. The acoustic
phonon energy spectrum is determined by the dispersion
relation ωq,LA = υLA |q| for the longitudinal mode and ωq,TA =
υTA |q| for the transverse mode, with υLA and υTA denoting
the corresponding sound velocities. In order to simplify
the approach, we consider phonon interactions at low bath
temperatures so that coupling associated with optical phonons
can be neglected.

Ĥ DP
ex−qb is the excitonic qubit–phonon interaction Hamilto-

nian associated with deformation potential coupling

Ĥ DP
ex−qb =

∑

λ,q

√

h̄|q|2
2ρ V ωq λ

Mp(q) σz

(

b†
λ(−q) + bλ(q)

)

× |nq λ〉〈nq λ| (7)

where |nq λ〉 denotes the occupation number of λ-mode phonon
with wavevector, q. V is the crystal volume and ρ is the mass
density of the material system. Dc and Dv are the respective

deformation potential constants for the conduction and valence
bands. Ĥ DP

ex−qb commutes with σz , i.e [σz, Ĥ DP
ex−qb] = 0 so that

a simplified model in which only the pure dephasing process
with no dissipation effects is considered in this work. The term
Mp(q) is given by

Mp(q) = 〈χs; nq λ ± 1| (Dcei q·re − Dvei q·rh
) |χs; nq λ〉

− 〈χas; nq λ ± 1| (Dcei q·re − Dvei q·rh
) |χas; nq λ〉. (8)

Details of evaluating an explicit expression for Mp(q) is
provided in [40]. In subsequent calculations, we assume that
	ze = 	e = 	zh = 	h ≈ 	 to determine the decoherence
function �(t) (see equation (13) given below) associated with
phonon coupling via deformation potential. It is important to
note that in equation (8), we have considered that phonon-
induced transitions between the symmetric and antisymmetric
states contribute predominantly to the decoherence process.
While scattering between other states occurs, the match
between phonon with low energies and the small energy
difference between |χas〉 and |χs〉 states is optimized at low
enough temperatures.

The Hamiltonian Ĥ Piez
ex−qb,λ describing exciton–phonon

interaction via piezoelectric coupling is given by

Ĥ Piez
ex−qb,λ =

∑

λ,q

8πee14

ε0εr |q|2
√

h̄

2ρ V ωq λ

× (

ξx,λqyqz + ξy,λqxqz + ξz,λqxqy
)

× Np σz

(

b†
λ(−q) + bλ(q)

)

|nq λ〉〈nq λ| (9)

where the relative permittivity, εr is assumed to be unaffected
by the contribution from strain fields associated with acoustic
phonon modes. e14 is the piezoelectric constant and ξi,λ

is the unit vector of polarization of the λ-phonon along
the i -direction. Excitonic interactions with phonons due to
piezoelectric coupling are highly anisotropic in nature [42] and
the form of Ĥ Piez

ex−qb,λ depends on the choice of polarization
components and the modes associated with λ. Using specific
dependence of Ĥ Piez

ex−qb,λ on LA, TA1 and TA2 modes [42], we
can evaluate the corresponding terms Np which has a form
similar to Mp in equation (8). Unlike Mp, Np vanishes as
q → 0 due to the exact cancellation of electron and hole
form factors as the piezoelectric coupling constant is the same
for both electron and hole. In subsequent calculations, we
assume that 	ze = 	e ≈ 	, 	zh = 	h, r = 	e/	h to simplify
evaluation of the decoherence function �(t) associated with
phonon coupling via piezoelectric coupling. At r = 1, the
dephasing rates reduce to zero due to the piezoelectric coupling
being a polar mechanism [40].

3.1. Exciton decay via spontaneous emission process

While our focus in this work is decoherence via phonon-
induced transitions, exciton decay via spontaneous emission
is also an important source of decoherence in quantum dot
systems. Here we briefly examine how excitons which
are Förster transferred are affected by recombination due to
spontaneous emission associated with an external environment
of photons. A crude estimate of the exciton lifetime can be
obtained by using a simple model of a two-level quantum dot

3
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exciton interacting with just a single mode of radiation at zero
electric field

1

τd
= ω3

o|µ|2
h̄π2c3ε

(

2	e	h

	e
2 + 	2

h

)2 (

2	ze	zh

	ze
2 + 	zh

2

)

(10)

where ωo is the exciton creation energy. For the GaAs/AlGaAs
system, we use typical values of ωo ∼ 1.9 eV, |µ| ∼ 5 eÅ
and 	e ≈ 	h = 	ze = 	zh	 = 1 nm to obtain a rough estimate
for the exciton lifetime, τd ∼ 300 ps. This is almost
comparable to estimates of the decoherence times of 10–
100 ps associated with exciton–phonon interaction in excitonic
qubits [40]. Hence we expect spontaneous emission processes
to provide an important alternative route to decoherence
besides those associated with phonon mediated interactions.
Nevertheless in subsequent sections, we will focus just on
phonons as providing the main source of decoherence during
phase evolution for mathematical simplicity. We expect
that exclusion of the spontaneous emission decay term in
equation (10) will not affect the overall order of magnitude of
the geometrical phase calculated using phonon related terms
only.

4. Geometrical phase of the composite exciton system

Here we briefly summarize the main properties of geometric
phases within the context of a two-level system like the exciton
qubit in quantum dots. When a two-level excitonic qubit
Hamiltonian undergoes cyclic evolution while driven by an
external field B, the Bloch vector traces a closed path in the
time interval [0, T ]. This closed path exists in the projective
Hilbert space of the Bloch sphere in which the north pole
represents the |L〉 state while the south pole represents the |R〉
state. All other superpositions states lie on the surface of the
Bloch sphere. The position of the vertex of the Bloch sphere is
controlled by the polar angle β determined by parameters ��

and interdot Förster amplitude F . At the completion of one
cycle in the parameter space B, the qubit state vector acquires
a geometric phase other than a dynamic phase. This geometric
phase which we denote as η0 is given by the well-known value
of half of the solid angle that the circuit path subtends at the
point B = 0 in the absence of environmental noise [16]. Thus
if the excitonic qubit system undergoes a unitary evolution with
cone angle β , η0 = 1

2� = −π(1 − cos β) where � is the
solid angle subtended by the conical path. η0 is not affected
by the speed of cyclical evolution [16]. In the presence of
dephasing and dissipation, evolution of η becomes non-unitary
and is modified by the addition of a correction term ηc to η0.
In this work, we evaluate the modified geometrical phase of
the composite exciton system η = η0 + ηc using the kinematic
approach of Oh et al [18, 19]. This approach is suitable for
two-level systems undergoing both dephasing and dissipation
due to external noises.

The interacting exciton–phonon system in equation (5)
satisfies the Schrödinger equation

i
∂|χt〉
∂ t

= ̂H env
qb |χt〉, (11)

where ̂H env
qb is given by equation (5) and the state vector |χt〉 is

given by a linear combination of the product of excitonic qubit
and phonon states. We consider an initial state given by

|χs〉 = cos
β0

2
|L〉 + sin

β0

2
|R〉.

At t = 0, |χs(0)〉 depends on the interdot Förster interaction
amplitude F through the angle β0 = β(0). The evolution of β

with time depends on the dynamics of the interaction between
the qubit states and the phonon bath. At t = 0, the reduced
density matrix is given by ρ0 = |χs(0)〉〈χs(0)|. At times t > 0,
the density matrix ρT = |χs〉〈χs| evolves according to

ρT (t) =
(

cos2 β(t)
2

1
2 sin β(t) eit�� Z

1
2 sin β(t) e−it�� Z sin2 β(t)

2

)

, (12)

where �� denotes the difference in exciton creation energy
between the two quantum dots (also known as bias) and Z(t) =
e−4�(t) gives a measure of the decay of the off-diagonal matrix
elements in the presence of a phonon bath. The decoherence
term �(t) has the well-known form [43]

�(t) =
∫

dω

h̄ω2
JX(ω) coth

(

h̄ω

2kBT

)

sin2 ωt

2
, (13)

where X = DP or Piez and JX(ω) is the spectral density
function which yields information about the interaction of the
quantum dot with phonons

JDP(ω) =
∑

q

Mp(q)2δ(ω − ωq)

JPiez(ω, λ) =
∑

q

Np(q)2δ(ω − ωq),
(14)

where Mp(q) is given in equation (8). Np(q) associated
with phonons which interact via piezoelectric coupling can
be obtained in similar form as equation (8). At small ω,
J (ω) ∼ ωk where the exponent k distinguishes the cases
of ohmic (k = 1), sub-(k < 1) and super-ohmic (k > 1)
couplings [43]. The angle β in equation (12) is also a function
of t and is determined (for t > 0 only) by:

tan
β(t)

2
= e−�(t) cot

β0

2
.

Following [18, 19], we define the geometrical phase η by
η = arg z where

z =
∑

j

√

E j (0)E j(T )〈χ j (0)|χ j(T )〉e− ∫ T
0 dt〈χ j (t)|χ̇ j (t)〉. (15)

The system frequency �� determines the quasi-cyclic path of
the geometric phase, with time t varying from 0 to T = 2π

��
.

E j(T ) and χ j (T ) refer to the eigenvalues and eigenvectors
respectively of the density matrix ρT in equation (12), and
(taking j = ±)

E±(t) = 1
2 ± 1

2

[

cos2 β(t) + e−2�(t) sin2 β(t)
]

1
2 ,

|χ+(t)〉 = cos
β(t)

2
|R〉 + e−it�� sin

β(t)

2
|L〉.

(16)

4
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The time evolution of the phase is determined only by
|χ+(t)〉 because E−(0) = 0, where we also use �(0) =
0, Z(0) = 1 and |χ+(0)〉 = |χs(0)〉. By substituting
equation (16) into equation (15) we find η takes the form
η = η0 + ηc where η0 = −π(1 − cos β0). ηc which accounts
for the non-unitary contributions due to a noisy environment is
obtained using a series expansion of the dissipative term ϑ

ηc ≈ ϑ

2πT

∫ T

0
dt

[

∂�(t)

∂ϑ

]

ϑ=0

. (17)

Using equations (7) and (9), we derive approximate
expressions for ϑ in terms of the environmental parameters for
λ = LA,

ϑDP ≈ (Dc − Dv)
2

ρυ2
LA

	3

ϑPiez ≈ e2e2
14

ε2ρυ2
LA

	
, (r > 1).

(18)

Hence the correction term ηc disappears for ϑDP = ϑPiez = 0
and the phase evolves unitarily in the absence of external
noise. The evaluation of ηc via equation (18) is justified
as we consider the GaAs/AlGaAs material system in which
the exciton–phonon interactions are weak and ϑDP, ϑPiez have
small values. Equation (15) is gauge invariant and can
be viewed as the weighted sum of component geometrical
phases with respect to eigenstates of the density matrix in
equation (12).

We use parameters typical to the GaAs/AlGaAs material
system [41] to calculate the geometrical phase η. Figures 1(a)
and (b) show η as functions of bias �� in the presence of
decoherence due to coupling with phonons via deformation
potential and piezoelectric coupling, respectively. The initial
state of entanglement is encoded in the angle β0 which provides
a measure of strength of entanglement between |L〉 and |R〉
states. The geometrical phase η0 increases with the strength of
entanglement and with β0 until the maximum value of η0 = π

is reached at β0 = π
2 . This explains the monotonic decrease

in |η0| (full lines) with ��. In subsequent figures, we note
a similar trend of η0 changing with other external parameters
like electric field E and interdot distance W .

Figures 1(a) and (b) also show the well-known increase
of decoherence effects with bath temperature which leads to
the suppression of η at higher temperatures, in agreement
with previous works [29]. Comparison of figures 1(a) and (b)
shows that the departure from unitary behaviour occurs more
at lower values of �� where there is a greater degree
of entanglement between the |L〉 and |R〉 states. This
feature is more marked in the case of phonon coupling
via deformation potential compared to coupling via the
piezoelectric mechanism due to the difference in strength and
nature of spectral density function associated with the two
modes of coupling mechanisms.

At T = 0 K, zero point fluctuations associated with a
noisy environment contribute to the correction term ηc. It
can be seen that such fluctuations make a sizable contribution
to non-unitary evolution at low bias ��. At very low
temperatures, the quantum-thermal timescale is given by

Figure 1. (a) Geometrical phase η (in units of π radians) as a
function of bias �� in the presence of decoherence due to coupling
with phonons via deformation potential at W = 5 nm,
	e ≈ 	h = 	 = 1 nm, electric field E = 0 MV m−1 and T = 35 K
(long dashed), 10 K (short dashed), T = 0 K (dotted) and unitary
evolution with no decoherence (full). (b) Geometrical phase η as a
function of bias �� in the presence of decoherence due to coupling
with phonons via piezoelectric mechanism at W = 5 nm,
	ze = 	e ≈ 	 = 1 nm, r = 	e/	h = 5, electric field E = 0 MV m−1

and T = 35 K (long dashed), 10 K (short dashed), T = 0 K (dotted)
and unitary evolution with no decoherence (full).

Tth = h̄/kBT and becomes very large compared to the cut-
off frequency ωc ∼ υLA/	;. ωc is the cut-off frequency
beyond which JX(ω) decreases to zero and is determined by the
approximate phonon flight time through the quantum dot which
is ∼0.5 ps for the case of the GaAs/AlGaAs material system.
With the loss of one timescale at T = 0, we expect bath
correlations to play a critical role in the quantum dynamical
interactions in the femtosecond timescale.

Figures 2(a) and (b) show that external electric field
E has similar effects on η as bias ��. An increase in
E results in a monotonic decrease in the interdot Förster
interaction amplitude F . This decreases the strength of
entanglement between the |L〉 and |R〉 states and consequently
|η0| decreases. Figures 2(a) and (b) show the larger suppression
of the geometrical phase and hence greater departure from
unitary evolution due to increasing temperatures at small
electric field values. The figures also show the disparity in
the response of η to an external electric field between the two
modes of phonon coupling mechanisms.

Decoherence increases with decreasing quantum dot size
	 as can be noted in the dissipative term ϑ (equation (18)).

5
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Figure 2. (a) Geometrical phase η as a function of external electric
field E in the presence of decoherence due to coupling with phonons
via deformation potential at �� = 1.5 meV, W = 5 nm,
	e ≈ 	h = 	 = 1 nm and T = 30 K (long dashed), 10 K (short
dashed), T = 0 K (dotted) and unitary evolution with no
decoherence (full). (b) Geometrical phase η as a function of external
electric field E in the presence of decoherence due to coupling with
phonons via piezoelectric mechanism at �� = 1.5 meV, W = 5 nm,
	ze = 	e ≈ 	 = 1 nm, r = 	e/	h = 5, and T = 35 K (long dashed),
10 K (short dashed), T = 0 K (dotted) and unitary evolution with no
decoherence (full).

Therefore suppression of the geometrical phase η is large at
small 	 as shown in figure 3(a) for exciton–phonon interaction
via deformation potential. This suppression is further enhanced
at higher temperatures. These features can also be obtained in
the case of piezoelectric mechanism but are expected to be less
marked.

An increase in the interdot distance W results in a decrease
in the strength of entanglement between the |L〉 and |R〉
states. Thus |η0| decreases with an increase in W as shown
in figure 3(b). The figure also shows that increasing the
bath temperature causes departure from unitary evolution at
small values of W . The results shown in figures 1(a)–3(b)
highlight the critical role of the bath temperature, external
electric field E and quantum dot parameters 	 and W in
influencing the properties of geometric phases in excitonic
qubit systems. These same parameters also have a strong
influence on the behaviour of zero point fluctuations in the
limit where temperature becomes zero. This information may
be useful in reducing phonon-assisted decoherence via careful
choice of system parameters in order to realize higher fidelity
in logic gate operations.

Figure 3. (a) Geometrical phase η as a function of quantum dot size
	e ≈ 	h = 	 in the presence of decoherence due to coupling with
phonons via deformation potential at �� = 2 meV, W = 6 nm,
electric field E = 0 MV m−1 and T = 40 K (long dashed), 20 K
(short dashed), T = 0 K (dotted). (b) Geometrical phase η as a
function of interdot distance W in the presence of decoherence due to
coupling with phonons via deformation potential at �� = 2 meV,
	e ≈ 	h = 	 = 1 nm, electric field E = 0 MV m−1 and T = 40 K
(long dashed), 20 K (short dashed), T = 0 K (dotted).

5. Effect of dynamic decoupling on the evolution of
the geometrical phase in the presence of decoherence

We consider the case of an excitonic qubit that is subjected to
two successive optical π pulses of femtosecond duration [35].
The first π -pulse rotates the qubit state vector through an
angle π about the x-axis while the second pulse inverts the
state vector back to its initial state. Under the action of
two π -pulses, the initial excitonic state acquires an overall
phase of π , provided decoherence mechanisms are absent. We
assume that the important effect of reversal of time evolution
of the qubit system is achieved during the bit-flipping of qubit
vectors. This is justified for pulses of very short duration
which is of the same order of magnitude as phonon interaction
and decay times in the non-Markovian dynamics regime [35].
To simplify the model, we ignore exciton–phonon interaction
while the decoupling pulses are switched on. This assumption
is justified as the pulses exist for very short times compared to
the decoherence times (≈10–100 ps) associated with exciton–
phonon interaction in excitonic qubits [40].

The Hamiltonian representing the dynamic decoupling
pulses is written as [31, 44]

Ĥpul =
N

∑

n=1

Vn(t)e
i ��

2 tσz σx e−i ��
2 tσz (19)
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Figure 4. (a) Geometrical phase η as a function of pulse interval �t
in the presence of decoherence due to coupling with phonons via
deformation potential at 	e ≈ 	h = 	 = 1 nm, W = 6 nm, and
T = 120 K (long dashed), 60 K (short dashed), T = 0 K (dotted)
and unitary evolution with no decoherence (full). (b) Geometrical
phase η as a function of pulse interval �t in the presence of
decoherence due to coupling with phonons via piezoelectric
mechanism at 	ze = 	e ≈ 	 = 1 nm, r = 	e/	h = 5, W = 6 nm, and
T = 120 K (long dashed), 60 K (short dashed), T = 0 K (dotted)
and unitary evolution with no decoherence (full).

where a periodic sequence of N equidistant ideal π -pulses
are applied at times tN = N�t . �t denotes the inter-pulse
separation time and Tv = 2�t is one cycle duration in the
dynamic decoupling process. In the presence of the dynamic
decoupling Hamiltonian in equation (19), the decoherence
function �(t) in equation (13) becomes modified [31]

�v(t) =
∫

dω

h̄ω2
JX(ω) coth

(

h̄ω

2kBT

)

sin2 ωt

2
tan2 ω�t

2
,

(20)
where time t = NTv . The term tan2 ω�t

2 which appears
as a result of the dynamic decoupling pulses suppresses
decoherence at low frequencies provided the relation ωc�t �
π is satisfied. At non-zero temperatures, the fastest timescale
of the environment is given by (1/ωc) with the dynamic
decoupling pulses acting as a high-pass filter [44] for quantum
noise associated with the surrounding bath of phonons.

In order to obtain numerical values for the GaAs/AlGaAs
material system, we set the initial geometrical phase of the
excitonic qubit to be η0 = −π(1 − cos 0) = −π . For the
sake of simplicity, we assume N = 2 so that only a pair of π -
pulses are considered. We consider the qubit state to begin
dephasing before the arrival of the first π -pulse. After the

arrival of two π -pulses, the qubit state acquires a corrective
geometrical phase associated with the topological component
of dephasing process besides a phase of −π . As mentioned
earlier, the corrective geometrical phase serves to suppress the
geometrical phase gained as a result of the dynamic decoupling
pulses. After the arrival of the first π -pulse and prior to the
arrival of the second π -pulse, the qubit has decohered for an
extra t = �t . Therefore the overall geometrical phase of the
excitonic qubit is given by η = −π + ηc where ηc can be used
in the form given in equation (17) with 2�t taken as the time
required for one cycle duration.

Figures 4(a) and (b) show that the non-unitary contribu-
tions due to phonon mediated interactions (as quantified by ηc)
increases with pulse interval �t . This is due to more time avail-
able for decoherence effects at larger values of �t . It is notable
that decoherence due to thermal effects decreases significantly
for �t ∼ 0.1 ps at bath temperatures as high as 120 K. The
dynamic decoupling mechanism provided by the π -pulses are
just as effective in reducing decoherence associated with zero
point fluctuations in the lattice medium. Overall the figure il-
lustrates the fact that as the pulse interval becomes smaller, the
effectiveness of the pulse control increases which is consistent
with results of earlier works [31, 35, 44].

It is to be noted that Markovian theory forms the basis of
decoherence function �(t) given in equations (13) and (20).
These expressions are adequate in the semiclassical regime
where small phonon correlation times with negligible memory
effects are present. However when the inter-pulse separation
time reaches values less than the phonon bath correlation
times, we expect Markovian theories to fail and the exciton–
phonon dynamics need to be modelled using a quantum kinetic
formalism [45]. It is expected that interesting short-time
system dynamics like phonon reservoir memory effects will
be revealed within this model which examines the exciton–
phonon interaction in terms of the retarded Green function and
phonon particle propagator terms. This formalism is beyond
the scope of our work and therefore we only consider inter-
pulse separation times �0.1 ps which correspond roughly to
the bath correlation time in GaAs/AlGaAs material systems.
We expect our simpler approach to not affect gross qualitative
features associated with the influence of inter-pulse separation
time �t on the evolution of geometrical phase. This critical
aspect remains the focus of our study of dynamic decoupling
pulses on geometrical phases in this section.

Lastly we note that the choice of a measurable quantity as
a substitute for geometrical phase η is a difficult one to make
as generally it is not easy to detect geometric phases using
experimental techniques. This is mainly due to limitations
associated with adiabatic conditions as well as the geometric
nature of the evolution of the quantum system. However, in the
case of solid state excitations like excitons formed in quantum
dots, multi-wave mixing techniques [35] can provide a possible
route to observing geometric phases despite weak photon-
echo signals which are obtained under current experimental
arrangements [35].
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6. Conclusions

We have studied the effect of phonon mediated interactions on
the non-unitary evolution of the geometrical phase in excitonic
qubits systems. We have examined the response of the
geometric phase to changes in temperature, external electric
field E and quantum dot parameters for two mechanisms
of exciton–phonon interaction which involve deformation
potential and piezoelectric coupling. We have also investigated
the effect of dynamic decoupling in the form of equidistant
ideal π -pulses on the evolution of geometrical phase in the
presence of decoherence effects.

Our results show significant differences in the response
of geometric phases to changes in temperature, for the
two mechanisms of exciton–phonon interaction involving
deformation potential and piezoelectric coupling. Thermal
effects appear to play a relatively minor role in the case of
phonon coupling via the piezoelectric mechanism. However
due to the presence of both coupling mechanisms in solid state
systems, one can conclude that bath temperatures play a critical
role in increasing decoherence effects depending on the bias,
external electric field, quantum dot size and interdot distances
in excitonic quantum dots that are entangled by Förster
coupling. On the other hand, zero point fluctuations become
increasingly important for small quantum dot sizes at very low
temperatures. We also expect spontaneous emission processes
to provide an important alternative route to decoherence in
quantum dot systems coupled to photon modes. While we
have not fully incorporated this mechanism of decoherence
in our calculations of the geometric phase, we expect exciton
decay processes to be just as important as phonon mediated
interactions, especially at low temperatures.

In the presence of time-reversal operations involving π -
pulses, our results are consistent with those of earlier works
showing the reduction of undesirable thermal effects even at
relatively high temperatures ≈100 K. Our results show that
dynamic decoupling via π -pulses becomes most effective in
reducing decoherence including zero point fluctuations at pulse
interval �t ≈ 0.1–0.5 ps. This timescale is consistent with
the phonon reservoir correlation time for the GaAs/AlGaAs
material system.

Finally, our results indicate that thermal effects associated
with phonon mediated interactions exert a measurable
influence on the non-unitary evolution of the geometrical
phase in quantum dot systems for a selected range of
external parameters. Dynamic decoupling via π -pulses
appears to reduce the undesirable effects of an increasing
bath temperature and possibly provide a viable solution to the
physical realization of logic systems based on geometric phase
gates.
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